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Critical Ising lines of the d52 Ashkin-Teller model
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The universal critical point ratioQ is exploited to determine positions of the critical Ising transition lines on
the phase diagram of the Ashkin-Teller model on the square lattice. A leading-order expansion of the ratio
Q in the presence of a nonvanishing thermal field is found from finite-size scaling and the corresponding
expression is fitted by the accurate perturbative transfer-matrix data calculations for theL3L square clusters
with L<9. @S1063-651X~97!04503-0#

PACS number~s!: 05.50.1q, 05.70.Jk, 64.60.Fr
as
t
an
tt
T
s
h

a

ha

to
lv
he
ity
te
le

p
u

tio
t

l
he
e
ith

la-
re

t.

cal-

iza-
of
n-

r
ion
er-
The Ashkin-Teller~AT! model has first been proposed
a model of a four component alloy@1#. It has attracted a lo
of theoretical interest for years because it is a simple
nontrivial generalization of the Ising and four-state Po
models. Fan@2# has shown that the Hamiltonian of the A
model can also be written with two Ising variable
(S561, s561) located at each site of the lattice, whic
in the presence of a magnetic field has the form

H52(
^ i , j &

~J1SiSj1J2s is j1J4Sis iSjs j1J0!2h(
i51

N

Sis i .

~1!

Herein we consider only the nearest neighbor pair inter
tions on the simple square lattice consisting ofN5L2 sites
with periodic boundary conditions and we assume t
J15J2 ~isotropic case!.

Wagner@3# has shown that the AT model is equivalent
the alternated eight vertex model, which has not been so
exactly. Only one critical line in the phase diagram of t
isotropic AT model is known exactly thanks to the dual
relation found by Fan@4#. For this reason many approxima
approaches have been applied for constructing the comp
phase diagram: the mean-field approximation~MFA! @5,6#,
mean-field renormalization group~MFRG! @7#, renormaliza-
tion group~RG! @8#, and Monte Carlo renormalization grou
~MCRG! @9#. It is the aim of this paper to establish an acc
rate location of the remaining critical lines.

In our approach we exploit finite-size scaling for the ra
of the square of the second moment to the fourth momen
the order parameterM :

QL5
^M2&L

2

^M4&L
, ~2!

where ^•••& means thermal average and the indexL indi-
cates the linear size of the system (L3L). In the limit
L→` this ratio becomes universal in the critical point@10#

*Electronic address: gjk@pearl.amu.edu.pl
†Electronic address: raf.dekeyser@fys.kuleuven.ac.be
551063-651X/97/55~3!/3724~3!/$10.00
d
s

c-

t

ed

te

-

of

and is denotedQ hereafter. Three not exactly known critica
lines of the isotropic AT model are believed to belong to t
Ising universality class@5,11#. Here it is assumed that thes
lines correspond to the Ising-like continuous transitions w
the order parameterM5( i51

N Sis i . A scaling formula for
QL can be derived starting from the finite-size scaling re
tion for the singular part of the free energy for the squa
Ising model@12#.

F ~S!~gt ,gh ,L
21!5A~gtL !lnL1B~gtL,ghL

yh!, ~3!

whereA andB are unknown amplitudes,gt , gh are nonlin-
ear scaling fields, andyh is the magnetic critical exponen
The nonlinear scaling fieldsgt and gh can be expanded in
terms of the corresponding linear thermal and magnetic s
ing fields t andh.

Taking into account the relations between the magnet
tion moments in Eq.~2! and the corresponding derivatives
the free energy@12# we have calculated the scaling expa
sion for QL(t,h50) to the leading order int and up to
L324yh:

QL~ t !5QL~0!1
]QL~ t !

]t U
t50

t1•••. ~4!

The zeroth-order termQL(0) was evaluated previously@12#
and the first-order term is of the form

]QL~ t !

]t U
t50

5a1L1a21a3L
322yh1~a41a5lnL !L222yh

1a6L
524yh1~a71a8lnL !L122yh

1~a91a10lnL !L424yh1a11L
22yh

1~a121a13lnL !L726yh

1~a141a15lnL1a16ln
2L !L324yh1•••, ~5!

where a i ( i51, . . .,16) are unknown amplitudes. In ou
work we consider only the first three terms in the expans
~5!, but for some future Monte Carlo applications the high
order terms in 1/L might be important.
3724 © 1997 The American Physical Society
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FIG. 1. TheL dependence of the critical values of the parameterK4c . The points on the vertical axis are the extrapolated value
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We have calculated theQL(t) ratio exploiting the
transfer-matrix technique which for the Ising model was e
plained in@12#. Our system consists ofL columns containing
L sites. Spins from thej th column are denoted b
SW j5(Sj1 ,s j1 ,Sj2 ,s j2 , . . . ,SjL ,s jL) so that

Z5 (
SW 1 ,S

W
2 , . . . ,S

W
L

exp@2bH~SW 1 , . . . ,SW L!#5TrTL, ~6!

whereT is a 4L34L transfer matrix. This can be split int
the productT5ThTv of a diagonal matrixTv and a nondi-
agonal matrixTh containing the intracolumn and the inte
column interactions, respectively. They are defined as
lows:

Tv~SW k ,SW l !5dSW k ,S
W
l
expS (

i51

N

~K2Sk,iSk,i111K2sk,isk,i11

1K4Sk,isk,iSk,i11sk,i111HSk,isk,i !D , ~7!

Th~SW k ,SW l !5expS (
i51

N

~K2Sk,iSl ,i1K2sk,is l ,i

1K4Sk,isk,iSl ,is l ,i !D , ~8!

whereb51/kBT, Ki5Jib ( i51,2,4), andH5bh. The latter
matrix can be expressed as a product of sparse matr
which facilitates the numerical calculations.

The averages in Eq.~2! can be expressed in terms of th
corresponding coefficientsZk @12# in the expansion of the
field dependent partition functionZ(h)5(k50

` Zk(h
k/k! !.

The coefficientsZk can then be calculated from Eq.~6! by
multiplying the base vectors by matricesTv andTh in such a
manner that the terms in the same power ofh are kept sepa-
rately @12#.

At first we calculate the amplitudesa i ( i<5) from Eqs.
~4! and ~5! with known valuesQL(0). In the limit K250,
i.e., the Ising model inSs, K4c5Kc5

1
2ln(11A2) and in this
-

l-

es,

case we have only one coupling constant (K4). Thus we can
write the reduced temperature in the form

t5
K4c2K4

K4
. ~9!

Selecting different values of the scaling fieldt we can
solve the set of linear algebraic equations fora i . For the
ferromagnetic couplingK4 we consider the system size
L52,3, . . . ,9whereas for the antiferromagnetic one only t
even valuesL52,4,6,8 are considered, so that we can eva
ate the coefficientsa i up to i55 or i53, respectively.

Having fixed K2Þ0 and knowing thea i ( i<3) and
QL(0), wehave calculatedQL(K2 ,K4) for a number of cou-
plingsK4. This enables a determination of the correspond
t values from Eqs.~4! and~5!. Then knowingt we can easily
obtainK4c from Eq.~9! andK2c from a similar equation, but
written for K2. The estimatesK4c andK2c are very stable if
we find tP^1027,1024&.

The exactly known critical curve with continuously vary
ing critical exponents@11# is terminated in the four-state
Potts point where it bifurcates. In the vicinity of this poin
the convergence of our results is diminished and the e
mates ofK4c become size dependent. This size depende
is illustrated in Fig. 1. Due to the limited number of syste
sizes available in our calculations we do not try to inclu
any corrections to scaling and we simply extrapolate
data. The corresponding estimates are shown on the ord
axis in Fig. 1. Such a strong size dependence does not o
for the antiferromagnetic couplings, since there is no Po
point in this case.

Our final results represented by open circles connected
thin continuous lines are shown in Fig. 2 and they are co
pared with other results and predictions. The numerical
certainties do not exceed the size of the symbol. The cu
plotted by the bold line represents the part of the phase
gram found exactly by Baxter@11#. It separates the Baxte
phaseB from the paramagnetic phaseP. The ferromagnetic
and antiferromagentic phases with nonvanishing order
rameterM are denoted by the labelsF andAF, respectively.
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FIG. 2. Phase diagram of the AT model in two dimensions. The solid bold line represents the exactly known critical line,
terminates at the four-state Potts point. Empty circles with continuous lines describe our results. The solid circles display MCRG
dotted line is drawn after Baxter, and diamonds are the transfer-matrix results combined with conformal invariance.
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In the ferromagnetic regionK4.0 we have only calcu-
lated the curve joining the four-state Potts point to the p
Ising pointKc atK250. The second branch follows from th
corresponding duality relation@5,11#. In the boundary be-
tweenAF and P phases with the dotted lines we plot th
approximate curve as given by Baxter@11# and in the ferro-
magnetic region we also include the MCRG results mar
by filled circles.

As can be seen~Fig. 2! our results are in good agreeme
with the MCRG @9# approach, but are quite different from
Baxter’s predictions@11# in the antiferromagnetic region. Fo
the boundary betweenAF andP phases, our results coincid
with those obtained by Mazzeoet al. @13#. These authors
actually investigated the six vertex model with the transf
matrix technique in combination with conformal invarian
off

, J
e

d

-

arguments; their results can be mapped onto the results
theP-phase boundaries and they are shown in Fig. 2.

As to our accuracy: near the ferromagnetic Ising point i
of about 231026 and in the neighborhood of the Potts poi
it decreases down to about 331022. The accuracy in the
antiferromagnetic region is even better: near the Ising poin
reaches 531028 and for the highest point at the phase d
gram in Fig. 2 it decreases to 331023.
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