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Critical Ising lines of the d=2 Ashkin-Teller model
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The universal critical point ratiQ is exploited to determine positions of the critical Ising transition lines on
the phase diagram of the Ashkin-Teller model on the square lattice. A leading-order expansion of the ratio
Q in the presence of a nonvanishing thermal field is found from finite-size scaling and the corresponding
expression is fitted by the accurate perturbative transfer-matrix data calculations fox thequare clusters
with L=<9. [S1063-651X97)04503-0

PACS numbg(s): 05.50+q, 05.70.Jk, 64.60.Fr

The Ashkin-Teller(AT) model has first been proposed as and is denote® hereafter. Three not exactly known critical
a model of a four component alldyt]. It has attracted a lot lines of the isotropic AT model are believed to belong to the
of theoretical interest for years because it is a simple andsing universality clas§5,11]. Here it is assumed that these
nontrivial generalization of the Ising and four-state Pottslines correspond to the Ising-like continuous transitions with
models. Far{2] has shown that the Hamiltonian of the AT the order parameteM=3N .So;. A scaling formula for
model can also be written with two Ising variables Q, can be derived starting from the finite-size scaling rela-

(S==*1, o==1) located at each site of the lattice, which tion for the singular part of the free energy for the square
in the presence of a magnetic field has the form Ising model[12].

N

H=—2, (1SS +3,010i+1:S 001+ o)~ >, So;.

iy = (1) whereA andB are unknown amplitudesy,, g, are nonlin-

ear scaling fields, angy, is the magnetic critical exponent.
Herein we consider only the nearest neighbor pair interacThe nonlinear scaling fieldg, and g, can be expanded in
tions on the simple square lattice consistingh\bt L2 sites  terms of the corresponding linear thermal and magnetic scal-
with periodic boundary conditions and we assume thaing fieldst andh.
J;=J, (isotropic casp Taking into account the relations between the magnetiza-
Wagner[3] has shown that the AT model is equivalent to tion moments in Eq(2) and the corresponding derivatives of
the alternated eight vertex model, which has not been solvethe free energy12] we have calculated the scaling expan-
exactly. Only one critical line in the phase diagram of thesion for Q_(t,h=0) to the leading order iri and up to
isotropic AT model is known exactly thanks to the duality L3~ 4%
relation found by Faf4]. For this reason many approximate
approaches have been applied for constructing the complete _ dQu(t)
phase diagram: the mean-field approximatiMFA) [5,6], QU=QL(0)+ at to @
mean-field renormalization groyMFRG) [7], renormaliza- =0
tion group(RG) [8], and Monte Carlo renormalization group The zeroth-order terr®, (0) was evaluated previous[y2]
(MCRG) [9]. It is the aim of this paper to establish an accu-gnd the first-order term is of the form
rate location of the remaining critical lines.
In our approach we exploit finite-size scaling for the ratio 5Q, (t)

FO(gi,0n, L H=A(giL)INL+B(giL,gnl"),  (3)

of the square of the second moment to the fourth moment of —; = a;L+ap+ azl® ht (ay+ asinl) L2 P
the order parametev!: t=0
(M?)? + agl> W+ (a7+ aginL)LI™n
L
QL:W’ (2) +(a9+alolnL)L474yh+a11L72yh

7-6yp
where(- - -) means thermal average and the indexndi- (at agdnb)L

cates the linear size of the systerhXL). In the limit + (a4t agdnl + adn?L)L3 Wt . ) (5)
L —oo this ratio becomes universal in the critical pojd0]

where ¢; (i=1,...,16) are unknown amplitudes. In our

work we consider only the first three terms in the expansion
*Electronic address: gik@pearl.amu.edu.pl (5), but for some future Monte Carlo applications the higher-
TElectronic address: raf.dekeyser@fys.kuleuven.ac.be order terms in 1/ might be important.
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FIG. 1. TheL dependence of the critical values of the paramBtgr. The points on the vertical axis are the extrapolated values.

We have calculated the&Q,(t) ratio exploiting the case we have only one coupling constaf). Thus we can
transfer-matrix technique which for the Ising model was ex-write the reduced temperature in the form
plained in[12]. Our system consists &f columns containing
L sites. Spins from thejth column are denoted by K. —K
4c 4

iJ:(S]l!O-]lISJ21O-]2! 1S]L10-JL) SO that t:K— (9)
4

z= > exg—BHE., ... SD]=TrTL (6
S35, .03, Selecting different values of the scaling fidldve can
solve the set of linear algebraic equations égr. For the
whereT is a 4 x4 transfer matrix. This can be split into ferromagnetic couplingk, we consider the system sizes
the productT =TT, of a diagonal matrixT, and a nondi- | =23 ... 9whereas for the antiferromagnetic one only the
agonal matrixTy, containing the intracolumn and the inter- eyen valued = 2,4,6,8 are considered, so that we can evalu-
column interactions, respectively. They are defined as folgte the coefficients; up toi=5 ori=3, respectively.
lows: Having fixed K,#0 and knowing thea; (i<3) and
N Q.(0), wehave calculate®, (K,,K,) for a number of cou-
2 XN e, . plingsK,. This enables a determination of the corresponding
To(220)= 52@@’“{ ,21 (KoSiSciv1t Koo t values from Eqs(4) and(5). Then knowing we can easily
obtainK,. from Eq.(9) andK,. from a similar equation, but
T HSk,iUk,i)) @ azttﬁenndZoer ?fc')—v,]io??‘?,matei(“ andK,. are very stable if
The exactly known critical curve with continuously vary-
N ing critical exponentd11] is terminated in the four-state
Th(ikail):exf{ > (KSiS i+ Kooy o7 Potts point where it bifurcates. In the vicinity of this point
i=1 the convergence of our results is diminished and the esti-
mates ofK,. become size dependent. This size dependence
, (8) is illustrated in Fig. 1. Due to the limited number of system
sizes available in our calculations we do not try to include
any corrections to scaling and we simply extrapolate our
wherep=1kgT, K;=J;8 (i=1,2,4), andH=gh. The latter  data. The corresponding estimates are shown on the ordinate
matrix can be expressed as a product of sparse matricegxis in Fig. 1. Such a strong size dependence does not occur
which facilitates the numerical calculations. for the antiferromagnetic couplings, since there is no Potts
The averages in Eq2) can be expressed in terms of the point in this case.
corresponding coefficientg, [12] in the expansion of the  Qur final results represented by open circles connected by
field dependent partition functio(h)=3y_,Z(h*/k!).  thin continuous lines are shown in Fig. 2 and they are com-
The coefficientsZ, can then be calculated from E¢6) by  pared with other results and predictions. The numerical un-
multiplying the base vectors by matricEs andT,, in such a certainties do not exceed the size of the symbol. The curve
manner that the terms in the same powehaire kept sepa- plotted by the bold line represents the part of the phase dia-
rately [12]. gram found exactly by Baxtdrll]. It separates the Baxter
At first we calculate the amplitudes, (i<5) from Eqs. phaseB from the paramagnetic phase The ferromagnetic
(4) and (5) with known valuesQ_(0). In thelimit K,=0, and antiferromagentic phases with nonvanishing order pa-
i.e., the Ising model I8, K 4,o=K.=3In(1+2) and in this rameterM are denoted by the labefs and AF, respectively.

+KaSi0%,iSio1i)
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FIG. 2. Phase diagram of the AT model in two dimensions. The solid bold line represents the exactly known critical line, which
terminates at the four-state Potts point. Empty circles with continuous lines describe our results. The solid circles display MCRG results,
dotted line is drawn after Baxter, and diamonds are the transfer-matrix results combined with conformal invariance.

In the ferromagnetic regioK,>0 we have only calcu- arguments; their results can be mapped onto the results for
lated the curve joining the four-state Potts point to the pureghe P-phase boundaries and they are shown in Fig. 2.
Ising pointK, atK,=0. The second branch follows from the  As to our accuracy: near the ferromagnetic Ising point it is
corresponding duality relatiofb,11]. In the boundary be- of about 2 10~ and in the neighborhood of the Potts point
tween AF and P phases with the dotted lines we plot the it decreases down to about<30 2. The accuracy in the
approximate curve as given by Bax{drl] and in the ferro-  antiferromagnetic region is even better: near the Ising point it
magnetic region we also include the MCRG results markedeaches & 1078 and for the highest point at the phase dia-

by filled circles. _ gram in Fig. 2 it decreases tox3L0 2.
As can be seefFig. 2) our results are in good agreement

with the MCRG[9] approach, but are quite different from  The numerical calculations were carried out in the Super-
Baxter’s prediction§11] in the antiferromagnetic region. For computing and Networking Center in Poznan the Cray
the boundary betweefslF andP phases, our results coincide J-916. The work has been supported in part by the Commit-
with those obtained by Mazzeet al. [13]. These authors tee for Scientific Research via Grant No. 2 P302 116 06. We
actually investigated the six vertex model with the transfer-also thank Dr. E. Carlon, Dr. P. Pawlicki, and Professor J.
matrix technique in combination with conformal invariance Rogiers for some discussions.
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